Inexact Numerical Methods for Inverse Eigenvalue Problems

نویسنده

  • Zheng-jian Bai
چکیده

In this paper, we survey some of the latest development in using inexact Newton-like methods for solving inverse eigenvalue problems. These methods require the solutions of nonsymmetric and large linear systems. One can solve the approximate Jacobian equation by iterative methods. However, iterative methods usually oversolve the problem in the sense that they require far more (inner) iterations than is required for the convergence of the Newton-like (outer) iterations. The inexact methods can reduce or minimize the oversolving problem and improve the efficiency. The convergence rates of the inexact methods are superlinear and a good tradeoff between the required inner and outer iterations can be obtained. AMS Subject Classifications. 65F18, 65F10, 65F15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

A Note on the Ulm-like Method for Inverse Eigenvalue Problems

A Ulm-like method is proposed in [13] for solving inverse eigenvalue problems with distinct given eigenvalues. The Ulm-like method avoids solving the Jacobian equations used in Newton-like methods and is shown to be quadratically convergent in the root sense. However, the numerical experiments in [3] only show that the Ulm-like method is comparable to the inexact Newton-like method. In this sho...

متن کامل

An Ulm-like Cayley Transform Method for Inverse Eigenvalue Problems

We propose an Ulm-like Cayley transform method for solving inverse eigenvalue problems, which avoids solving approximate Jacobian equations comparing with other known methods. A convergence analysis of this method is provided and the R-quadratic convergence property is proved under the assumption of the distinction of the given eigenvalues. Numerical experiments are given in the last section an...

متن کامل

A Tuned Preconditioner for Inexact Inverse Iteration Applied to Hermitian Eigenvalue Problems

In this paper we consider the computation of an eigenvalue and corresponding eigenvector of a large sparse Hermitian positive definite matrix using inexact inverse iteration with a fixed shift. For such problems the large sparse linear systems arising at each iteration are often solved approximately by means of symmetrically preconditioned MINRES. We consider preconditioners based on the incomp...

متن کامل

Local convergence analysis of several inexact Newton-type algorithms for general nonlinear eigenvalue problems

We study the local convergence of several inexact numerical algorithms closely related to Newton’s method for the solution of a simple eigenpair of the general nonlinear eigenvalue problem T (λ)v = 0. We investigate inverse iteration, Rayleigh quotient iteration, residual inverse iteration, and the single-vector Jacobi-Davidson method, analyzing the impact of the tolerances chosen for the appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006